Visualizzazione post con etichetta simmetria. Mostra tutti i post
Visualizzazione post con etichetta simmetria. Mostra tutti i post

giovedì 8 dicembre 2011

La simmetria sul piano cartesiano

Compiti per casa

realizzati su Geogebra da

Beatrice:

Esercizi n° 28-29-30-31-32 pag.227 libro di geometria!!.ggb Sorriso

Ecco l’applet. Clic

simmetria piano cartesiano

Il n° 31 lo ha eseguito correttamente su Geogebra anche Giovanni

simmetria piano cartesiano

Le costruzioni sono realizzate utilizzando le proprietà dei punti nella simmetria assiale. Come in entrambi i lavori si può verificare visualizzando “oggetti nascosti” : rette e circonferenze (a meno che quella furbetta di Bea non abbia, in qualche figura, “imbrogliato”, usando lo strumento di Geogebra Sorriso Sorriso)

Stampa il post

lunedì 5 dicembre 2011

Simmetrie del quadrato e analogie di struttura

Le abbiamo viste in classe.

Ho riportato su Geogebra le osservazioni sulle simmetrie del quadrato, nelle quali abbiamo riconosciuto analogie di struttura: operazioni geometriche, operazioni aritmetiche, operazioni logiche... elementi e operazioni del tutto diverse dove si ripete però lo stesso motivo, la stessa struttura!

A partire da questa immagine:

simmetrie del quadrato

osservando particolari coppie di figure, ci si accorge che alcune coppie sono inversamente uguali, ottenute perciò con un ribaltamento, altre sono direttamente uguali, si ottengono senza che la figura si sollevi dal piano, come avviene ad es. con la rotazione.

 Sull’applet, potete interagire, sono riportate le composizioni di simmetrie e rotazioni e

la tabella di composizione:

tavola composizione simmetrie e rotazioni del quadrato

Ragazzi, qui vi sottolineo un particolare sulla composizione delle due simmetrie assiali. E’ noto come il Teorema dei due ribaltamenti:

Il prodotto di due simmetrie assiali rispetto ad assi incidenti equivale alla rotazione, intorno al loro punto di intersezione, di ampiezza pari al doppio dell’angolo formato dagli assi di simmetria. 

Verificatelo sull’applet.

Ricordiamo le strutture analoghe, viste l’anno scorso (clic sulle immagini, sono le vostre relazioni):

Tabella dell’addizione del Pari e Dispari 

tabella addizione Pari e Dispari

Tabella di composizione del Sì e del No

tabella Si e No

E la tavola dell'addizione dello zero e dell'uno

tabella addizione zero e uno

Attenzione! Non c'è un errore nell'ultima casella in basso: 1+1 non fa 0 nella nostra aritmetica, ma in un’aritmetica che ancora dobbiamo scoprire, quella delle "classi resto [0] modulo 2", sì! (per il momento stabiliamo soltanto che i simboli 0 e 1 stanno ad indicare, in modo breve, i termini pari e dispari: i numeri pari sono i numeri che divisi per 2 danno resto 0 e i numeri dispari sono i numeri che divisi per 2 danno resto 1)

Potete scaricare un file Excel tab_Pari_Dispari.xls dove troverete, anche la legge moltiplicativa oltre a quella additiva.

Stampa il post

venerdì 2 dicembre 2011

Simmetrie, giochi di specchi

Tempo fa scrissi 

in un commento su Il piccolo Friedrich, che avrei rubato l’attività sulle Riflessioni geometriche della maestra Cristina. [Ragazzi, fate clic sul link dell’attività, vedrete le belle immagini del lavoro della classe!]

Infatti: ho proposto nella classe seconda, la simmetria dei poligoni regolari anche attraverso l’utilizzo degli specchi incidenti.

Il materiale è stato procurato dai ragazzi; chi preciso, chi un po’ meno, hanno costruito gli specchi, disegnato, ritagliato, e svolto con entusiasmo e allegra partecipazione l’attività.

Qualcuno ha lavorato con più calma a casa e principalmente di quei lavori ci siamo serviti per riportare i risultati e le scoperte in una presentazione Power Point. Abbiamo lavorato anche con Geogebra, simulando gli specchi incidenti. Le osservazioni sulla presentazione sono tratte dalle relazioni dei ragazzi sul lavoro svolto.

Anche le righe che seguono sono una sintesi dei loro diversi scritti.

In prima media abbiamo già conosciuto la simmetria. Con Geogebra abbiamo costruito, con rotazioni, inviluppi, effetto caleidoscopio, ecc..., tante belle figure simmetriche anche animate.

Nello studio dell’aritmetica (le tabelle dell’addizione e della moltiplicazione)  e della geometria abbiamo riconosciuto figure che si guardano allo specchio ! Ma abbiamo scoperto che la simmetria è un fenomeno che si registra in natura, non solo nell'aritmetica e geometria.

Ora, in seconda, stiamo facendo un lavoro di maggiore consapevolezza, dice la prof!
Per studiare meglio la simmetria dei poligoni regolari abbiamo utilizzato gli specchi.
Con due specchi incidenti, uniti con un pezzo di scotch, facendo in modo che si possano muovere a seconda dell'angolo desiderato, abbiamo eseguito delle attività divertenti. Ecco la nostra presentazione!

Grazie, Maestra Cristina!

Link

Nostro lavoro su geogebra, simulazione specchi. Con doppio clic si può aprire l’applicazione e salvare.

Altri nostri lavori:

Simmetrie nei poligoni regolari
Simmetrie nel rombo e nel rettangolo
Trova gli assi di simmetria nel triangolo
Trova gli assi di simmetria nel rettangolo
E con la simmetria?
Da cosa nasce ... “+ belle immagini!”

Stampa il post

venerdì 18 novembre 2011

Il cuore con la simmetria

Marco D. (II)

ha rivisitato la costruzione del cuore con Geogebra, con la simmetria assiale.

Clic su immagine per vederla sull’applet.

cuore

bene, Marco!

Stampa il post

venerdì 5 agosto 2011

Trova gli assi di simmetria nel triangolo

Come promesso,

visualizziamo gli assi di simmetria nel triangolo.

Rielaborata ancora la costruzione del prof Mentrard, sull’applet potete scegliere il tipo di triangolo e, piegando, trovare gli assi di simmetria. SE presenti e il loro numero a seconda del tipo di triangolo!

- Seguite le indicazioni, avete disponibili gli strumenti. Potete creare gli angoli e osservare le proprietà in relazione al tipo di triangolo secondo gli angoli.
[vi lascio del lavoro insomma, mica devo fare tutto io! Sorriso]

Siete capaci di prevedere la presenza e il numero di assi relativi a ciascun tipo di triangolo?

Clicassi simmetria triangoloimage

Stampa il post

giovedì 4 agosto 2011

Trova gli assi di simmetria nel rettangolo

Ragazzi,

Dopo tanti giochi ... ma ancora un divertimento con GeoGebra! 

Giusto per costruire con Geogebra ho voluto riprodurre un lavoro del prof Mentrard: piegando, trova gli assi di simmetria del rettangolo.

Ho semplificato la costruzione originale, ma possiamo studiare bene la simmetria del rettangolo. Per altro molto semplice!Sorriso

Clic su img

assi simmetria rettangolo

- Seguiranno costruzioni altre figure ...

grazie al prof Mentrard

Stampa il post

mercoledì 29 giugno 2011

Video estate_2

Ragazzi,

ancora vostre creazioni. Stavolta è Marco D che accompagna Beatrice.

Bravi! Al prox video?

Stampa il post

giovedì 23 giugno 2011

E con la simmetria?

Eh eh ... giocare, giocare!

Questo l’ho fatto io! Sorriso

rotazione e simmetria

O così?rotazione e simmetria

Ma ovvio che ho giocato ispirandomi a QUESTI BEI LAVORI!

Andate a vedere tutti i lavori di gruppo!

rotazioni e simmetrie

Ragazzi, ringraziando sempre maestra Renata, vi dico

 Come si fa. Ma, si lavora di fantasia!

- Prima dovrete aver imparato i giochi precedenti.

- Dovete poi costruire i simmetrici di determinati punti rispetto a due rette perpendicolari (basta anche rispetto agli assi cartesiani – visualizza Assi, su Geogebra –)

- Come esempio controllate l’applet della mia costruzione, su cui lascio visualizzati tutti gli oggetti. I punti iniziali sono A, B, D, E, gli altri sono ottenuti da rotazione e simmetria.

Sull’applet trovate altre indicazioni.

A voi personalizzare! - Compreso l’intervallo dello slider, il suo incremento e la velocità.

Potete anche scaricare il file con il doppio clic e salvare. Ora clic su img.image

Buone costruzioni!

Stampa il post

giovedì 24 febbraio 2011

Da cosa nasce ... “+ belle immagini!”

"+ belle immagini!"

- e sì, “+” , ma solo per stavolta, intesi ?!? -

E’ la e-mail che mi invia Beatrice con le immagini realizzate con GeoGebra a partire da questo esercizio.

Corretta la costruzione, si è poi divertita con le simmetrie.

Ok, non mi ha risposto sulla variante - invariante ma ... perdono! - mmh, ma quante cose perdono?Sorriso

Ecco le simmetrie:

image

imageimage

image

image

image

Bea, brava!

Stampa il post

domenica 13 dicembre 2009

Create fiocchi di neve!

Ragazzi, tutti!:-)

E non dite che non vi propongo relax! Uno un po’ natalizio? O a proposito di neve …

Potete divertirvi a creare on line bellissimi fiocchi e cristalli di neve personalizzati.

Ogni puntino che vedete nel paesaggio dell’immagine è un fiocco di neve creato da un internauta (navigatore della Rete!), che potete ingrandire avvicinandovi con il mouse. Si può anche stampare cliccando su print.

Create il vostro fiocco cliccando su Create, al centro, sotto il paesaggio. Tracciate sul foglio bianco delle linee o ritagli casuali, vedrete l’anteprima subito visibile sulla sinistra. Che belle simmetrie eh???

Una volta completato cliccate su done (solo il nome!) e potete vedere “nevicare” anche il vostro fiocco!

buon divertimento!

Stampa il post

venerdì 16 ottobre 2009

Simmetrie nel rombo e nel rettangolo

Ebbene, Anna Laura e Saverio si sono decisi a costruire correttamente i poligoni non regolari! (è stata necessaria piccola tirata d'orecchi per ricercare... Che non si ripeta!:))

Le simmetrie nel rettangolo:

Le simmetrie nel rombo

Clic sulle figure per visualizzare le applet geogebra

Stampa il post

lunedì 12 ottobre 2009

Simmetrie nei poligoni regolari

Saverio e Anna Laura hanno lavorato con GeoGebra, sugli assi di simmetria dei poligoni.

Ho dato una mano (agito sui suoi file) a Saverio per sistemare le condizioni per mostrare l'oggetto, nei lavori sulle simmetrie dei poligoni regolari. 
Un poligono regolare ha tanti assi di simmetria quanti sono i suoi lati.
Assi di simmetria nel quadrato. Clic sulle immagini per vedere le animazioni


Assi di simmetria nel triangolo equilatero

Assi di simmetria nel pentagono regolare

Per quanto riguarda le simmetrie dei poligoni non regolari ... ehmm, no, non ci siamo con le costruzioni, Anna Laura e Saverio! Le ho trovate ancora imperfette. Devono esserlo, non è per eccesso di rigore!:)

Stampa il post

sabato 10 ottobre 2009

Simmetrie ... dove, di Gimmi

Giammario - o Gian Mario o Gimmi! :) - è andato alla ricerca di simmetrie...

Le simmetrie assiali e centrali non le vediamo solamente in geometria ma sono diffusissime nell’arte, nella natura che ci circonda, nel corpo umano ecc....
Ecco le mie immagini trovate in internet e dal libro di Arte.

La simmetria centrale nella cupola di San Pietro, interno


I rosoni della facciata della cattedrale di Notre Dame 


Il Colosseo


Il pavimento del presbiterio di San Vitale a Ravenna (dal libro di Arte)


Nella natura, la simmetria centrale nelle margherite 


e nei girasoli


La simmetria assiale nelle farfalle


Se notiamo, il nostro scheletro

i nostri polmoni  

e i reni  

sono anch’essi simmetrici.

Stampa il post

venerdì 9 ottobre 2009

Per giocare ancora con la simmetria...

... un esercizio!
Suu, ragazzi, animato però! :-)
Animato su geogebra, ma potete anche eseguirlo manipolando un quadrato di carta.
Seguitemi:
Piegando un foglio di carta quadrato, di vertici A, B, C, D, dovete ottenere un pentagono:
a) piegate prima il foglio facendo perno nel vertice C, in modo da portare il lati BC e DC sulla diagonale AC.
osservate l'immagine tratta dall'animazione geogebra (che andrete poi ad aprire)


b) piegate ora la forma così ottenuta

in modo da portare il vertice C sul vertice A, come nella figura:

c) Domanda: Qual è l'ampiezza dell'angolo α?
Clic sull'ultima immagine per aprire l'applet geogebra.
Non troverete la barra degli strumenti, quindi NON potrete misurare l'angolo.
A meno che ... non proviate a rifare la costruzione :-)
PS. clic destro e ... spiare!

Stampa il post

lunedì 5 ottobre 2009

La simmetria ... dove

Eh ragazzi... già!
Abbiamo tanto lavorato sulle simmetrie, abbiamo costruito figure simmetriche, ora possedete migliori strumenti per osservare simmetrie ... dove?
Ma ... nel mondo che ci circonda!
Nella natura (animali, piante), nell'anatomia, nell'architettura, nella chimica, nella fisica, nello sport (eh sì, avete visto ai recenti mondiali di nuoto, le spettacolari gare di nuoto sincronizzato? Che poi è anche danza!), perfino nella grammatica (avete presenti le parole palindrome? Quelle che si leggono e da sinistra verso destra e da destra verso sinistra, es: oro. Si possono anche comporre delle intere frasi palindrome, quindi simmetriche! Provate un po' a cercare ... o parlatene con la prof d'italiano), ecc... !
E, bèh... naturalmente nella matematica.
Sapete dunque riconoscere, e direi apprezzare, le simmetrie?
Cominciamo da quelle che conosciamo da un po'.
Le tabelle dell'addizione e della moltiplicazione ad es:


tabella addizione
Noi non facciamo altro che eseguire semplici somme, non costruiamo simmetrica la tabella, essa è simmetrica (per via della proprietà .... Che domanda , vero?? Spero!) rispetto alla diagonale principale, che costituisce perciò ... ... ... ?
Ancora, impariamo a vedere simmetrie.
Ricordate lo smile regalatoci da maestra Renata?
Nell'immagine lo vedete a metà, clic per completarlo

Dunque, è simmetrico?
Ancora: non so se ricordate la curva a farfalla, Butterfly di Fay.
Anch'essa, clic per completare

Le rette che avete visto nelle applet, cosa rappresentano?
Possiamo dire che le figure possiedono un asse di simmetria?
E avremmo, anche sul blog, tantissimi altri esempi. Non vi resta che andare a cercare immagini e vederle con altri occhi! :-) Cercate di scoprire anche che tipi di simmetrie vedete.
Osservate ora qualche esempio [le foto prese da un testo di B. Rosaia], fra i tanti che potete scoprire guardandovi attorno, di simmetria nella natura:




Direte che non sono simmetrie perfette: ma forse proprio per questo sono così affascinanti!
Ma gli uomini, nel corso della storia, hanno osservato attentamente la natura e hanno realizzato simmetrie perfette, nelle costruzioni, nell'arte...



Quest'ultima immagine possiede un solo asse di simmetria? Siete capaci di individuarne altri?
Un link fra tutti per osservare splendide decorazioni, architetture ... mozzafiato!
Fotos Alhambra
L'Alhambra è una cittadella
"costruita intorno al 1300, sempre stata una Mecca per chi è fanatico di questa parte della storia matematica della simmetria: l'Alhambra di Granada. Arroccata tra le colline pedemontane della Sierra Nevada , nella Spagna meridionale, la città sembra quasi spuntare dalle fertili pianure dell'Andalusia. [...] Per i matematici, l'abitudine di andare all'Alhambra e tentare di individuare esempi di tutte e 17 le simmetrie sulle pareti, sui soffitti, sui pavimenti, come se partecipassero a una caccia al tesoro, è diventata una sorta di pellegrinaggio."
Da Il Disordine Perfetto - Marcus Du Sautoy

Ora a voi, ragazzi, oltre a quello di una ricerca alla scoperta di simmetrie, il compito di trovare simmetrie nelle figure geometriche che conosciamo. Sul quaderno o con Geogebra, individuate assi, centri oppure ... assenza di simmetrie, nei triangoli, quadrilateri (quadrato, rombo, trapezio, rettangolo...), pentagoni ecc...

Stampa il post